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Serum albumin (SA), the most abundant soluble protein in the body, maintains plasma oncotic
pressure and regulates the distribution of vascular fluid and has a range of other important
functions. The goals of this review are to expand clinical knowledge regarding the functions of
SA, elucidate effects of dysregulated SA concentration, and discuss the clinical relevance of
hypoalbuminemia resulting from various diseases. We discuss potential repercussions of SA
dysregulation on cholesterol levels, liver function, and other processes that rely on its
homeostasis, as decreased SA concentration has been shown to be associated with
increased risk for cardiovascular disease, hyperlipidemia, and mortality. We describe the
anti-inflammatory and antioxidant properties of SA, as well as its ability to bind and transport a
plethora of endogenous and exogenous molecules. SA is the primary serum protein involved
in binding and transport of drugs and as such has the potential to affect, or be affected by,
certain medications. Of current relevance are antibody-based inhibitors of the neonatal Fc
receptor (FcRn), several of which are under clinical development to treat immunoglobulin G
(IgG)-mediated autoimmune disorders; some have been shown to decrease SA
concentration. FcRn acts as a homeostatic regulator of SA by rescuing it, as well as IgG,
from intracellular degradation via a common cellular recycling mechanism. Greater clinical
understanding of the multifunctional nature of SA and the potential clinical impact of
decreased SA are needed; in particular, the potential for certain treatments to reduce SA
concentration, which may affect efficacy and toxicity of medications and disease progression.
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INTRODUCTION

Serum albumin (SA) is the most abundant plasma protein in
blood, and its well-known role in maintaining plasma oncotic
pressure and regulating fluid distribution between vascular
compartments (1–3) has historically overshadowed its other
important functions. These include binding and transport of a
diverse array of endogenous molecules and exogenous drugs,
combined with its antioxidant and anti-inflammatory properties
(1, 4). It is difficult to isolate a single function of SA, as its many
roles are interconnected and collectively serve to maintain
homeostasis in the body.

The objectives of this review are to expand clinical knowledge
regarding the multiple functions of SA, elucidate the potential
causes and effects of dysregulated SA concentration, and discuss
the clinical relevance of hypoalbuminemia (defined as SA
concentration <3.5 g/dL) (5) resulting from various diseases or
certain drugs. The detailed mechanisms modulating drug
interaction with SA in the presence and absence of endogenous
and exogenous ligands have been described extensively elsewhere
(6, 7) and will not be reviewed in detail here. Rather, we focus on
several interconnected effects of SA on health and the
potential clinical impact of SA concentration in patients with
known risk factors, patients with chronic inflammatory disease
or an autoimmune disorder, and patients with multiple
comorbidities (e.g., dyslipidemia) (8). We also examine the
potential for certain immunomodulatory neonatal Fc receptor
(FcRn) inhibitors to reduce SA concentration and for reduced SA
concentration to, in turn, affect the efficacy and toxicity of some
medications. A better understanding of the interplay among SA
concentration and endogenous and exogenous molecules will
help clinicians recognize the potential for SA-related
complications, elicit novel therapeutic insights, optimize
treatment strategies and regimens, and improve quality of life
for patients.
SYNTHESIS AND FUNCTIONS OF
ALBUMIN

Albumin is exclusively synthesized by hepatocytes at a rate of
roughly 150 mg/kg/day (9), meaning a person weighing 70 kg
would synthesize approximately 10.5 g/day. The rate of synthesis
is dependent on the body’s needs and on alterations in colloid
osmotic pressure, as well as osmolality of the hepatic
extravascular space (10). When a change in oncotic pressure in
the hepatic vascular beds is detected by osmoreceptors in the
hepatic interstitial matrix, the rate of albumin synthesis changes
accordingly (10). It has been suggested that a healthy liver can
boost synthesis of albumin by up to 3-fold in response to
increased turnover or catabolism; however, there is scant
evidence to support this widely held assumption (11).

Following synthesis in the liver, albumin is released in the
extracellular space via exocytosis; ~40% is intravascular, and
~60% is distributed throughout organ/tissue interstitial spaces,
predominantly in muscle, adipose and connective tissue, and
Frontiers in Immunology | www.frontiersin.org 2
skin (11). Via lymphatic vessels, there is movement of albumin
between interstitial and intravascular spaces (1). Albumin has a
high concentration in plasma, comprising roughly half of total
protein content, and the high concentration together with a
strong negative net charge are major contributors to the
maintenance of plasma oncotic pressure (1). Interstitial
concentration of albumin is lower than in serum and varies by
anatomical location (1); concentrations of ~7 g/L in adipose
tissue and ~13 g/L in skeletal muscle have been reported (12).

SA has a dominant role in binding and transport of numerous
endogenous molecules, including thyroxine, bilirubin, amino
acids, and fatty acids (FAs), throughout the body (1, 11). SA is
considered the major plasma carrier of FAs, which play a critical
role in generation and storage of energy for various cells and
tissues throughout the body (13, 14). SA can accommodate a
range of FA chain lengths among the 7 binding sites with
differing affinities (FA1 through FA7) located across its 3
domains (15–17). SA binds cholesterol-containing vesicles and
mediates transport of molecules between fibroblasts and other
peripheral cells (18, 19). It also strongly binds and transports
exogenous molecules—and their affinity for SA can influence
drug behavior, potentially affecting the rate of delivery and the
efficacy or toxicity of a drug (17, 20).

Its multiple binding sites provide an ideal platform for free
radical scavenging, giving SA its robust anti-inflammatory and
antioxidant properties (4, 21). SA also binds various
inflammatory mediators and is involved in regulating the
immune response in systemic inflammation (4). Because SA
has been suggested to be responsible for >70% of total free
radical–trapping activity, it constitutes the dominant antioxidant
in the circulatory system (22). The reduced sulfhydryl group of
Cys34 in domain I works as a free radical scavenger for multiple
reactive oxygen species (ROS) and reactive nitrogen species (21,
23). SA can also bind free metal ions, thereby controlling their
reactivity, limiting their availability, and decreasing ROS
formation (21).
FCRN BINDING OF ALBUMIN AND IGG

In healthy humans, the half-life of SA is roughly 21 days;
ultimately, ~84% is catabolized, with the remainder excreted
via feces (~10%) and urine (~6%) (11). It should be noted that
the amount of SA lost through urinary output is minimal,
normally <20 mg/day (24). The unusually long half-life of SA
is regulated by FcRn, a broadly expressed cellular receptor
predominantly found in acidified endosomes (25, 26). This
regulation occurs via pH-dependent engagement by the
receptor (27), with binding at acidic endosomal pH (6.5-6.0)
that becomes negligible at near-neutral pH (7.0-7.4), directing
recycling or transcytosis across polarized cell layers and resulting
in rescue of albumin from intracellular degradation (28, 29)
(Figure 1A). Specifically, following fluid-phase pinocytosis,
albumin binds FcRn at acidic pH within endosomes, then the
FcRn-albumin complex recycles to the cell surface, where
exposure to the neutral pH of the extracellular milieu triggers
June 2022 | Volume 13 | Article 892534
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release of albumin into the circulation (31–33). Similarly to the
endosomal pathway of immunoglobulin G (IgG) recycling (34),
the albumin recycling process occurs in both hematopoietic and
nonhematopoietic cells, particularly macrophages and
endothelial cells, ensuring wide distribution of albumin
throughout the body (35, 36). As such, in addition to liver
synthesis, pH-dependent FcRn binding is critical for
maintaining a high circulatory concentration of SA.

Because IgG antibodies also bind FcRn in a comparable pH-
dependent manner, IgG has a similarly long half-life as albumin
(25, 37, 38); however, IgG and albumin binding sites on FcRn are
distinct and do not overlap (29, 38). In analyses of the structure
of FcRn-albumin-antibody complexes, it has been shown that
although binding of IgG and albumin to FcRn can occur
simultaneously (30, 32) (Figure 1B), the fragment antigen-
binding (Fab) arms of bound IgG may lead to steric clashes
with the cell membrane, resulting in an orientation of FcRn with
respect to the membrane that is less favorable for albumin
binding (37). It has been proposed that, to overcome these
clashes, IgG binds FcRn in a T-shaped conformation, which
would be enabled by the highly flexible nature of the Fab arms
(39). Studies have shown that the Fab arms of an IgG molecule
can affect behavior in FcRn-mediated functions (40, 41),
indicating that these effects vary for antibodies with different
variable domain sequences and Fab arm flexibility (41, 42). The
importance of FcRn for maintaining SA concentration has been
demonstrated in multiple in vitro and preclinical studies in
which FcRn deficiency decreased both half-life and
Frontiers in Immunology | www.frontiersin.org 3
concentration of SA (28, 35, 43, 44). FcRn knockout mice
reportedly have an albumin catabolic rate twice that of normal
mice, but synthesis rates only 20% higher than in normal mice
and SA concentration that is 40% lower (45). FcRn directs newly
synthesized albumin into the vascular space rather than into bile,
a process that protects the liver from being damaged by albumin-
bound toxins or drugs. Hepatic FcRn deficiency in mice has been
shown to increase loss of SA into bile and influence the
development of hypoalbuminemia (35). In addition, preclinical
studies investigating maintenance of adequate SA concentration
showed that FcRn expressed in the kidneys is also involved in
preventing loss of SA. Albumin is filtered across the glomerulus
and reclaimed by proximal tubule cells (46). FcRn in the apical
area of the proximal tubule facilitates reclamation and mediates
pH-dependent transcytosis with the albumin-binding cubilin-
megalin complex (46, 47). FcRn-deficient mice were shown to
excrete more SA into urine than did wild-type mice, and wild-
type mice transplanted with a kidney lacking FcRn developed
albuminuria (48).
DRUG BINDING BY SERUM ALBUMIN

SA is the principal plasma protein for the binding of drugs (49).
The 3-dimensional structure of albumin comprises a single
nonglycosylated polypeptide chain with 3 domains (I, II, and
III), each consisting of 2 subdomains (A and B) and multiple
reversible and irreversible binding sites (3, 20, 50). There are 2
A B

FIGURE 1 | The Role of FcRn in Serum Albumin Regulation. The depicted processes of recycling and transcytosis collectively regulate SA concentration. (A) FcRn-
mediated recycling and transcytosis rescue albumin and IgG from intracellular degradation. FcRn-albumin binding is critical for maintaining albumin homeostasis via
scavenging, recycling, and transport of the FcRn-albumin-IgG complex through the endosomal recycling pathway. Subsequently, albumin and IgG antibodies are
released into the extracellular space via exocytosis, whereas other proteins are degraded in lysosomes. (B) Molecular architecture of the complex between the
extracellular region of FcRn (yellow), albumin (blue), and an IgG1 antibody (blue or red). The Fc moiety of an antibody (gray) can recruit 2 FcRn molecules.
Simultaneously, each FcRn molecule can bind 1 additional albumin molecule (blue). All molecules are shown in surface representation. Figure generated with PyMOL
using PDB entry 4N0U (30). Beta-2 microglobulin not shown. FcRn, neonatal Fc receptor; IgG, immunoglobulin G; SA, serum albumin.
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main drug-binding sites, one in the IIA subdomain (Sudlow site
I) and the other in the IIIA subdomain (Sudlow site II) (51). SA
can also be harnessed to extend the half-life of drugs and reduce
drug toxicity (23). Used as a carrier, SA joined to a therapeutic
compound via covalent binding or noncovalent conjugation or
fusion enables extension of the drug half-life and improved
pharmacokinetic properties (52, 53).

Alterations to the structure of albumin or changes in its
concentration in serum can alter drug-binding capacity, affecting
pharmacokinetics and impacting therapeutic efficacy and/or side
effects (7). Because only the unbound drug can interact with its
target(s), alterations in SA concentration can lead to a drug being
metabolized less or more quickly, influencing therapeutic effect
(20). In addition, because low SA concentration leads to a
reduction in available binding sites, a larger ratio of an
administered SA-binding drug can be present as free drug,
increasing the potential for side effects (54). The free fraction
of a drug can be affected by concomitant administration of other
drugs that also bind to SA, resulting in drug-drug interactions at
the level of protein binding (17).

The long circulating half-life of SA increases its susceptibility to
posttranslational modifications (PTMs), including glycation and
oxidation (23, 52, 55). PTMs can alter the structure and/or function
Frontiers in Immunology | www.frontiersin.org 4
of SA (4, 56) and negatively impact its ability to bind FcRn, thereby
decreasing its half-life (52, 57). Increased rates of glycation of SA,
commonly seen in diabetes, can reduce drug-binding capacity, as
can glycation-induced alterations to its molecular structure,
independent of rate (3, 56). Increased glycation of SA has also
been reported in patients with heart failure (HF), with highest levels
in those with the most severe HF (58). Oxidation can similarly
impact the binding properties of SA, and because oxidized SA is
removed more quickly from circulation, overall availability and
capacity for binding and transport are reduced (50). Increased S-
thiolation (oxidation) of albumin has also been shown in the plasma
of patients with HF, and level of thiolated SA may represent a viable
marker for HF prognosis and diagnosis (59).

Many of the drugs in the standard treatment armamentarium
for autoimmune disorders, including glucocorticoids such as
prednisolone and methylprednisolone, as well as nonsteroidal
immunosuppressants such as mycophenolic acid and tacrolimus,
are highly protein bound, as are many common cardiovascular
(CV) medications (Table 1). Patients with autoimmune conditions
are frequently treated for CV comorbidities; in a sample of patients
with myasthenia gravis (MG), dyslipidemia was the most common
comorbidity (60%; 140 of 234 patients) (63). In addition, certain
lipid-lowering drugs can affect SA concentration by increasing its
TABLE 1 | Protein binding of medications used in autoimmune and cardiovascular diseases.

Disease Context Drug Class Drug Protein Bound, %

Autoimmune
AChE inhibitors Pyridostigmine* ~80
Corticosteroids Prednisone <50

Prednisolone 65-91
Methylprednisolone ~76
Dexamethasone 77

Immunosuppressants Azathioprine 30
Mycophenolic acid†

Mycophenolate mofetil
98
97

Cyclophosphamide† 20
Methotrexate† 46.5-54
Tacrolimus† 99

Cardiovascular
Statins Simvastatin ~95

Rosuvastatin 88
Pravastatin 43-48
Atorvastatin >98

Fibrates Fenofibrate 99
Ezetimibe >90

Beta blockers Bisoprolol ~30
Metoprolol 11
Nebivolol 98
Propranolol ~90

CCBs Nifedipine 92-98
ACE inhibitors Captopril 25-30

Perindopril 10-20
Enalapril <50

ATII inhibitors Losartan 98
Anticoagulants Warfarin†

Apixaban
99

92-94
Rivaroxaban 92-95
Edoxaban ~55
June 2022 | Volume
ACE, angiotensin-converting enzyme; AChE, acetylcholinesterase; ATII, angiotensin II; CCBs, calcium channel blockers.
*Percentage for pyridostigmine is for albumin-specific binding (60); all others are general protein-binding percentages sourced from DrugBank (61).
†Indicates a drug that has been defined as having a narrow therapeutic index (62) by the US Food and Drug Administration.
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urinary excretion. Statin treatment has been shown to be
independently associated with microalbuminuria (64), defined as
urinary excretion of 30 mg to 300 mg of albumin in a 24-hour
period (65). It has been reported that approximately one-third of
patients with MG are receiving statins (66) for the treatment of
dyslipidemia, a prominent risk factor for CV disease (67).
Accordingly, the potential for consequences from altered SA
concentration in specific disease states may have greater
clinical significance.

The clinical impact of hypoalbuminemia is drug-specific and
most well characterized for narrow therapeutic index drugs,
defined by the US Food and Drug Administration (FDA) as
drugs that can result in “serious therapeutic failures and/or
adverse drug reactions that are life-threatening or result in
persistent or significant disability or incapacity” due to minor
differences in dose or blood concentration (62). For example, with
valproic acid and phenytoin, it has been shown that reduced SA
concentration can lead to a higher free fraction of these drugs (68),
increasing the probability of (neuro)toxicity. The anticoagulants
warfarin and rivaroxaban are both highly protein bound (99% and
92%-95%, respectively) (69) and hypoalbuminemia is associated
with higher risk for overanticoagulation in patients taking
warfarin (70). Lower SA level has also been associated with
higher risk of bleeding events in rivaroxaban-treated patients;
each decrease of 1.0 g/dL of SA in one inpatient population was
shown to increase bleeding risk 4.4-fold (69). For many other
drugs, both decreased efficacy and/or safety are still rather
theoretical risks, based on mechanistic insights. To what extent
these risks will be clinically relevant is a matter of ongoing debate.
PATHOPHYSIOLOGY OF SERUM
ALBUMIN ABNORMALITIES

At present, SA concentration is normally assessed and monitored
only in acute disease flares and following trauma, e.g., in
Frontiers in Immunology | www.frontiersin.org 5
hospitalized patients, although decreased SA concentration has
been linked to worsening disease severity and increased mortality
in multiple chronic conditions, including CV, metabolic, and
autoimmune diseases and disorders (71, 72). Hypoalbuminemia
may also result from primary chronic inflammatory disease,
systemic inflammation, and kidney and liver disease, as well as
from comorbid conditions (8).

The clinical implications of alterations in SA concentration
seen with various disease states are not widely understood by
clinicians (8) nor are the potential interactions with
pharmacologic treatments, including the potential to enhance
or hinder efficacy and increase toxicity of commonly prescribed
drugs (7) or trigger or worsen comorbidit ies such
as hyperlipidemia.

Cardiovascular Disease and Dyslipidemia
Hypoalbuminemia has emerged as a novel and potentially
powerful prognostic marker in coronary artery disease (CAD)
and appears to have predictive value for incidence of CV disease
(73). Low SA concentration is associated with increased total and
low-density lipoprotein (LDL) cholesterol levels, as well as
increased CV mortality risk (73, 74). Low SA has also been
related to impairments in fibrinolysis, vasodilatory ability, and
anticoagulation and increased blood viscosity and vascular
permeability (Figure 2), all factors associated with increased
CV risk (18).

Low SA concentration, a characteristic of nephrotic
syndrome, has been significantly negatively correlated with
serum cholesterol levels and elevated total and LDL cholesterol
in patients with this disorder, and with hypertriglyceridemia
(74). Although the mechanisms are not yet well understood, it is
known that in proteinuria, SA with less free fatty acid
(FFA) content is lost; the remaining SA thus has higher
FFA content and this imbalance contributes to development of
hypertriglyceridemia (74). Microalbuminuria has also been
shown to be an important CV risk factor in patients with
FIGURE 2 | Nononcotic Pressure Functions of Serum Albumin and Consequences of Alterations in Concentration on Aspects of Health and Disease. Schematic
representation of the interactive effects among the physiological functions (not including colloid oncotic pressure) of SA and the processes by which alterations in SA
can lead to further decreases in SA concentration and to increases in disease severity and comorbidities; total cholesterol, LDL, and triglyceride levels; CV risk and
events; and drug-related AEs. AE, adverse event; CV, cardiovascular; LDL, low-density lipoprotein; SA, serum albumin.
June 2022 | Volume 13 | Article 892534
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diabetes or hypertension and in the general population (75, 76).
Increased excretion of SA via urine, even at levels not meeting
the standard for microalbuminuria, has been associated with
increased incidence of all-cause and CV mortality (77).

The relationship between decreased SA concentration and
elevated cholesterol has been explored in studies using albumin-
deficient mice. Engineered Alb-/- mice were shown to have a
generalized hyperlipidemic state in comparison to control mice
(78). Total cholesterol (standard deviation [SD]) in the 2 strains
of Alb-/- mice (B6 and Tg32) was 164.8 mg/dL (7.5) and 147.25
mg/dL (44.91), respectively, compared with their corresponding
parental Alb+/+ mouse cohorts, 121.5 mg/dL (12.5) and 126.75
mg/dL (2.75), respectively (78). The LDL levels were similarly
higher in the B6 and Tg32 line Alb-/- mice, 8.325 mg/dL (1.53)
and 20.075 mg/dL (8.79), respectively, compared with the
corresponding parental Alb+/+ mice, 4.025 mg/dL (0.70) and
5.35 mg/dL (0.94), respectively (78).

Reduction in SA concentration and plasma oncotic pressure
can be compensated for by increased hepatic synthesis of albumin
and apolipoprotein B-100 (apoB-100), among other serum
proteins (79). Because SA is the primary transporter of FAs,
dramatic reduction in SA can lead to increased FA transport by
apoB-100, frequently resulting in dyslipidemia (80). Although the
mechanisms of this are not well understood, total cholesterol levels
are generally increased, mainly attributable to increased LDL
levels, while high-density lipoprotein (HDL) levels remain the
same or decrease (14). In addition, SA reduction can lead to
defective cholesterol enrichment of HDL, because SA helps
transfer free cholesterol from peripheral tissues to HDL
particles. Similarly, in most reported cases of analbuminemia
(congenital hypoalbuminemia), as well as in Alb-/- mouse
models (78), hypercholesterolemia was primarily attributable to
increased LDL concentration, with HDL concentration being less
affected (80). Hypercholesterolemia resulting from lowered SA
would, therefore, be expected to increase the risk for
atherosclerotic complications. In addition, SA may play a role in
facilitating cholesterol efflux from cells (81), a potentially
cardioprotective mechanism.

Acute and Chronic Diseases
SA is a negative acute-phase protein, meaning its concentration
decreases in response to acute inflammatory response (18). In a
prospective chart study of 30,732 hospitalized patients in 10
Israeli medical wards (January 2011-December 2013),
hypoalbuminemia at admission was significantly associated
with comorbid malignancy, hypertension, ischemic heart
disease, and chronic kidney disease (71). When compared with
the mean length of hospitalization for patients with normal SA
concentration at admission (5±7 days), patients with mild (<2.5
g/dL) or marked (2.5-3.5 g/dL) hypoalbuminemia had longer
stays (7±8 days and 9±11 days, respectively) in this study (71).

In severe liver disease, such as advanced cirrhosis,
hypoalbuminemia can result from both decreased synthesis
and increased posttranscriptional changes that alter structure
and impair SA function (9). Such damage can adversely affect
antioxidant, scavenging, immune-modulating, and endothelial
Frontiers in Immunology | www.frontiersin.org 6
protective functions and reduce the amount of SA that still has
effective binding capacity (82).

Chronic disease or adverse lifestyle factors (eg, smoking,
obesity) resulting in hypoalbuminemia can be compounded by
aging itself, a slow yet inevitable inflammatory process (8).
Hypoalbuminemia has been associated with increased risk of
all-cause mortality (71) and microalbuminuria has been shown
to be a strong independent predictor of mortality in a prospective
general population cohort study (n = 40,856 questionnaire
respondents; Netherlands) (83).

Autoimmune Disorders
SA concentration is being investigated as a biomarker for
severity, disease characteristics, and response to treatment in
certain autoimmune disorders, including pemphigus vulgaris
(PV) (84), Guillain-Barré syndrome (GBS) (85), and MG (86).
Reduced SA concentration, commonly reported in patients with
an autoimmune disorder, may additively worsen patient health
and functioning, in part related to the amount of SA available to
function as a critical antioxidant.

In one PV study, recently diagnosed patients (n=116) had
significantly lower SA concentration compared to age- and sex-
matched healthy controls (n=120; P<0.001) (84). In a Chinese
report of patients with MG (n = 166) vs healthy controls (n=214),
SA and serum creatinine concentrations were significantly lower
in the patients with MG (P<0.001 for both) (86). In another
report on these 166 inpatients with MG at a single hospital center
in China (between 2009 and 2015), those who had a lower SA
concentration had more-severe disease and a statistically
significantly higher incidence of myasthenic crisis than those
who had a higher SA concentration (P<0.05) (72).

Treatment with intravenous immunoglobulin (IVIg) may
further decrease SA concentration. In a Dutch study of patients
with GBS (n=174), after IVIg treatment, the percentage of patients
with hypoalbuminemia increased from 12.8% to 34.5% of the
study population (85). Low SA concentration, both pre- and
posttreatment, was statistically significantly associated with poor
clinical recovery (not able to walk 10 m independently and GBS
disability score ≥2; P<0.001), independent of other clinical
prognostic factors (85). History of IVIg treatment and
hypoalbuminemia were statistically significantly (P<0.001)
associated with poor outcomes (not achieving Myasthenia
Gravis Foundation of America minimal manifestation) in a
study of 104 patients with MG receiving treatment at a medical
college in Japan between 2000 and 2017 (87).
FCRN INHIBITOR TREATMENTS

Antibody-based drugs targeting the IgG binding site on FcRn are
increasingly being explored to treat IgG-mediated autoimmune
disorders in humans (88, 89); these drugs block the interaction of
FcRn with endogenous IgG. Of the FcRn inhibitors in
development, some have demonstrated, in preclinical, phase 1
(Table 2), and phase 2 trials (Table 3), an effect on SA
concentration as well (89). It is currently unclear whether
June 2022 | Volume 13 | Article 892534
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differences in effect on SA concentration may relate to differences
in FcRn inhibitor design, such as format (full-length IgG vs Fc
fragment), subclass, Fc effector functions, mode of binding,
affinity, pH dependency, or binding epitope.

Rozanolixizumab/UCB7655 (UCB Biopharma), a humanized
IgG4 monoclonal antibody (mAb), showed modest decreases in
mean SA concentration in a phase 1 study in healthy adult
volunteers treated with a low-dose regimen (91). In a phase 2
study of rozanolixizumab in adult patients with primary immune
thrombocytopenia (ITP), a maximum mean decrease in SA
concentration of 4.5% was observed with the 20-mg/kg dose at
day 8, which returned to baseline levels (98).

A phase 1 study of nipocalimab/M281 (Momenta/Janssen), a
fully human IgG1 mAb (aglycosylated to reduce effector
functions), showed asymptomatic transient reductions in SA
concentration (up to 22%) in patients in the single ascending
and multiple dose phases of the study (89, 93). In a phase 2 study
in generalized MG (gMG), reductions in SA were observed across
4 intravenous (IV) dosing regimens (5 mg/kg every 4 weeks, 30
mg/kg every 4 weeks, 60 mg/kg every 2 weeks, and 60 mg/kg single
Frontiers in Immunology | www.frontiersin.org 7
dose) over 8 weeks of treatment; the largest reduction was
observed in the group receiving 60 mg/kg every 2 weeks (83).

Orilanolimab/ALX1380 [AstraZeneca/Alexion (formerly
SYNT001, Syntimmune)], a humanized IgG4 mAb, was
reported to have no effect on SA concentration in a phase 1
healthy volunteer study using single ascending doses (94). In a
phase 1b/2 study of orilanolimab in patients with PV, no
noteworthy changes in SA concentration after 5 weekly IV
doses of 10 mg/kg were reported (100).

Administration of batoclimab/IMVT-1401/HBM9161
(Immunovant), a fully human IgG1 mAb with Fc mutations
(L234A/L235A) to reduce effector functions, resulted in reversible,
asymptomatic, dose-dependent reductions in SA concentration, to
20% below baseline by day 28 after 4 weekly subcutaneous (SC)
doses of 340 mg and to 31% below baseline after 4 weekly SC doses
of 680 mg, in a phase 1 healthy volunteer study (96). In another
phase 1 study of batoclimab in healthy volunteers, a single SC dose
of 680 mg resulted in transient reductions of SA up to 10% below
baseline at day 11 (95). A phase 2 study in gMG showed reductions
in SA concentration of 16% with 6 weekly SC doses of 340 mg and
TABLE 2 | Effect of FcRn inhibitors on serum albumin concentration in preclinical and phase 1 studies.

FcRn Inhibitor Phase and Dosing Schedule Effect on SA Citation

Rozanolixizumab
(Humanized IgG4 mAb)

• Preclinical RD in cynomolgus monkeys;
150 mg/kg IV q3d×13w or 50 or 150 mg/kg SC
q3d in weeks 1, 6, and 10

Variable individual decreases (≤13% from baseline) Smith B et al; MAbs; 2018
(90)

• Phase 1 SAD (N=49); 1, 4, or 7 mg/kg or
placebo; IV or SC

Variable individual decreases; not statistically significantly
different from placebo

Kiessling P et al; Sci Transl
Med; 2017
(NCT02220153) (91)

Nipocalimab (Fully
human aglycosylated
IgG1 mAb)

• Preclinical in cynomolgus monkeys No effect Ling LE et al; Am Soc
Hematol; 2015 (92)

• Phase 1 SAD cohort (n=34); 0.3, 3, 10, 20, or
60 mg/kg or placebo; IV

Mild, asymptomatic reductions Ling LE et al; Clin
Pharmacol Ther; 2019 (93)

• Phase 1 MAD cohort (n=16); 15 or 30 mg/kg
or placebo; IV qw×4w

Up to 22% reduction from baseline Ling LE et al; Clin
Pharmacol Ther; 2019 (93)

Orilanolimab
(Humanized IgG4 mAb)

• Preclinical RD in cynomolgus monkeys; 10,
30, or 100 mg/kg; IV qw×5

No effect Blumberg LJ et al; Sci
Adv; 2019 (94)

• Phase 1 SAD (n=31); 1, 3, 10, or 30 mg/kg or
placebo; IV

No effect Blumberg LJ et al; Sci
Adv; 2019 (NCT03643627)
(94)

Batoclimab (Fully
human aglycosylated
IgG1 mAb)

• Phase 1 SAD cohort (n=24); 340, 510, or
680 mg or placebo; SC injection

Reversible reductions ≤10% from baseline Yap DYH et al; Clin Transl
Sci; 2021 (NCT03971916)
(95)

• Phase 1 MAD cohort (n=20); 340 mg or 680
mg or placebo; SC injection qw×4w

Reversible, dose-dependent decreases: 20% below baseline
after 340 mg qw×4w and 31% below baseline after 680 mg
qw×4w

Collins J et al; Neurology;
2019 (96)

Efgartigimod (Modified
Fc fragment)

• Preclinical in cynomolgus monkeys Not reported Ulrichts P et al; J Clin
Investig; 2018 (97)

• Phase 1 SAD cohort (n=30); 0.2, 2, 10, 25, or
50 mg/kg or placebo; IV

No decrease Ulrichts P et al; J Clin
Investig; 2018
(NCT03457649) (97)

• Phase 1 MAD cohort (n=32); 10 mg/kg
q4d×6, 10 mg/kg q7d×4, 25 mg/kg q7d×4, or
placebo; IV

No decrease Ulrichts P et al; J Clin
Investig; 2018
(NCT03457649) (97)
June 2022 |
IgG, immunoglobulin G; IV, intravenous; mAb, monoclonal antibody; MAD, multiple ascending dose; RD, repeated dose; SAD, single ascending dose; SC, subcutaneous; qw, every week;
q3d, every 3 days; q3w, every 3 weeks; q7d, every 7 days; w, week.
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26% with 6 weekly SC doses of 680 mg (89). A phase 2b clinical trial
of batoclimab as treatment for thyroid eye disease was paused when
a 12-week assessment showed elevated total and LDL cholesterol
levels in active-treatment patients (89, 101).

Efgartigimod alfa (argenx), recently approved by the FDA for
treatment of gMG (105), is an engineered Fc fragment derived
from human IgG1 that blocks FcRn recycling of IgG by binding
naturally via its Fc domain to FcRn (97, 106). SA concentration
was not decreased by efgartigimod in a phase 1 trial in healthy
volunteers (97). In a phase 2 study of efgartigimod in patients
with ITP randomly assigned to receive 4 weekly IV infusions of
placebo or efgartigimod at a dose of 5 mg/kg or 10 mg/kg,
changes in SA concentration from baseline to 3 days after final
infusion were similar for the placebo and treated groups (102). In
a phase 2 trial of up to 34 weeks of efgartigimod treatment in PV/
pemphigus foliaceus, average SA concentration increased slightly
and transiently, within normal limits, and returned to baseline
levels after treatment was stopped (103). Total serum cholesterol
and LDL levels, as measured in 1 cohort, remained within
normal limits across all active study and follow-up assessment
Frontiers in Immunology | www.frontiersin.org 8
points (103). In the phase 3 ADAPT trial of efgartigimod in
gMG, no decreases in SA concentration or increases in
cholesterol were seen (104).
DISCUSSION

The clinical importance of SA concentration and the relationship
of SA to disease, in combination with therapeutics, is complex.
Increasing evidence suggests it may be useful to monitor SA
concentration in patients with diseases or disorders that affect its
steady-state concentration. Dysregulation of SA in CV disease,
diabetes, and certain autoimmune disorders, including MG and
GBS, can affect multiple body systems. Oxidation and glycation
of SA, resulting from disease processes, as well as from aging,
complicate the clinical picture. Awareness of these changes could
help clinicians better manage disease.

Although the published literature is limited, hypoalbuminemia
in autoimmune disorders has been associated with increased disease
severity. Because SA is largely responsible for the antioxidant
TABLE 3 | Effect of FcRn inhibitors on serum albumin concentration and cholesterol in phase 2 and phase 3 studies.

FcRn Inhibitor Phase Treatment and Dosing Schedule Effect on SA Impact on
Cholesterol

Citation

Rozanolixizumab
(Humanized IgG4
mAb)

Phase 2 in ITP
(N=66)

SAD of 15 mg/kg or 20 mg/kg, MAD of
4 mg/kg qw×5w, 7 mg/kg qw×3w, or
10 mg/kg qw×2w; SC infusion

Max mean decrease 4.5% from
baseline (WNL)

Not reported Robak T et al; Blood Adv;
2020 (NCT02718716) (98)

Phase 2a in MG
(N=43)

Period 1: 7 mg/kg qw×3w or placebo; SC
infusion (2-week washout)

Not reported Not reported Bril V et al; Neurology;
2021 (NCT03052751) (99)

Period 2: 4 mg/kg, 7 mg/kg, or placebo
qw×3w; SC infusion

Nipocalimab (Fully
human aglycosylated
IgG1 mAb)

Phase 2 in gMG
(N=68)

SAD of 5 mg/kg qw×4, 30 mg/kg qw×4,
60 mg/kg q2w×5, SD of 60 mg/kg, or
placebo; IV

Reductions reported; greatest
reductions in 60-mg/kg q2w
group

Not reported Wolfe GI et al; J Neurol
Sci; 2021
(NCT03772587) (89)

Orilanolimab
(Humanized IgG4
mAb)

Phase 1b/2 in PV
(N=8)

10 mg/kg qw×5w; IV No noteworthy effects reported Not reported Werth VP et al; J Investig
Derm; 2021
(NCT03075904) (100)

Batoclimab (Fully
human aglycosylated
IgG1 mAb)

Phase 2 in gMG
(N=17)

340 mg, 680 mg, or placebo qw×6; SC
injection

Reductions of 16% from
baseline in 340-mg group and
26% in 680-mg group

Not reported Wolfe GI et al; J Neurol
Sci; 2021
(NCT03863080) (89)

Phase 2b in TED
(N=65)

255 mg, 340 mg, 680 mg, or placebo
qw×12w; SC injection

Not reported (trial voluntarily
paused)

Elevated total
cholesterol
and LDL

Wolfe GI et al; J Neurol
Sci; 2021 (89)
Men CJ et al; Ther Adv
Ophthalmol; 2021
(NCT03938545) (101)

Efgartigimod
(Modified Fc
fragment)

Phase 2 in ITP
(N=38)

5 mg/kg, 10 mg/kg, or placebo qw×4w; IV Similar to placebo Not reported Newland AC et al; Am J
Hematol; 2020
(NCT03102593) (102)

Phase 2 in PV/PF
(N=34)

10 mg/kg or 25 mg/kg qw×4w; IV Transient increases (WNL) No impact
(n=11 patients
in cohort 4)

Goebler M et al; Br J
Dermatol; 2021
(NCT03334058) (103)

Phase 3 in gMG
(N=167)

10 mg/kg or placebo qw×4w; IV No decrease Not reported Howard JF Jr; Lancet
Neurol; 2021
(NCT03334058) (104)
June 2022 | V
IgG, immunoglobulin G; ITP, immune thrombocytopenia; IV, intravenous; gMG, generalized myasthenia gravis; mAb, monoclonal antibody; MAD, multiple ascending dose; MG,
myasthenia gravis; PF, pemphigus foliaceus; PV, pemphigus vulgaris; SAD, single ascending dose; SC, subcutaneous; SD, single dose; TED, thyroid eye disease; qw, every week; q2w,
every 2 weeks; w, week; WNL, within normal limits (3.5-5.0 g/dL).
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capacity of serum, the decreased SA concentration commonly seen
in patients with autoimmune disorders may contribute to the
underlying inflammatory processes. Additionally, many of the
primary medications, including prednisolone, methylprednisolone,
and the nonsteroidal immunosuppressant mycophenolate mofetil,
used to treat various autoimmune diseases are protein bound.
Therefore, their efficacy and safety could be affected by reductions
in available SA binding sites, leading to increased drug clearance.

Some newer drugs on the horizon for the treatment of
autoimmune disorders also have SA-related effects. FcRn
inhibitors targeting the IgG binding site on the receptor are not
intended to decrease SA, only to accelerate clearance of
endogenous IgG. In clinical trials, however, some IgG mAbs
that reduce IgG levels by inhibiting FcRn-IgG interactions have
had the off-target effect of concomitantly decreasing SA
concentration. Important questions remain regarding the link
between FcRn inhibitors and SA. Flow cytometry and
microscopy data have shown that higher affinity and/or avidity
and/or lower pH-dependent binding to FcRn of an anti-FcRn
antibody, relative to the engineered Fc fragment efgartigimod,
results in greater retention in FcRn-positive compartments, as well
as increased lysosomal accumulation (97). Upon investigation of
intracellular trafficking of FcRn by immune complexes, it was
shown that cross-linking of FcRn diverted the majority of the
cross-linked receptors to lysosomes (107). These findings suggest
that the different binding properties of FcRn-specific antibodies
and an engineered Fc fragment (with increased affinity for FcRn)
might modulate the behavior of FcRn within cells, leading to
possible effects on SA recycling.

An increased understanding of the nononcotic functions of
SA, especially during this period of accelerated drug
development in MG (89, 108), may help improve the risk/
benefit assessment and selection of optimal therapeutic
regimen for a wide array of disease conditions and patient
types. Although increased catabolism or excretion of SA is
partly compensated for by increased synthesis, resulting in a
milder net loss, stimulating liver synthesis of proteins such as
apoB-100 and fibrinogen can result in comorbidities, including
dyslipidemia. Greater clinical attention to SA concentration is
warranted for older patients, patients on multiple drugs that
could potentially affect or be affected by SA concentration, and
patients with multiple comorbidities.
FUTURE PERSPECTIVES

As FcRn inhibitors become used more widely in clinical trials, the
potential for mild to moderate decreases in SA concentration to
have subsequent impacts on lipid panels and CV risk may become
increasingly apparent as additional patient populations are treated.
Because many of these patients will be older and may have
comorbidities, the importance of a fuller understanding by
healthcare providers of the role of SA in healthy and disease
states will grow more urgent. The most obvious clinical
indications are the various IgG-mediated auto- and alloimmune-
diseases, meaning these patients may be inherently more susceptible
to treatment side effects resulting from lowered SA concentration.
Frontiers in Immunology | www.frontiersin.org 9
Fortunately, several candidate FcRn inhibitors have shown little or
no effect on SA concentration and might, therefore, be safer in a
broader array of disease settings.
CONCLUSIONS

Increased awareness is needed regarding the clinical importance
of monitoring plasma SA concentration in patients with diseases
or disorders known to correlate with decreased SA concentration
and/or who are being treated with drugs that may lower SA
concentration, independently or in combination with
concomitantly administered drugs. As more data become
available, the question whether clinicians should routinely
evaluate SA concentration to aid in monitoring disease
progression and decreasing the potential for side effects and
adverse events could gain traction. As such, SA concentration
may become an increasingly important consideration in the
design and outcomes of clinical trials using FcRn inhibitors, as
well as potential future treatment with FcRn inhibitors that are
associated with decreases in SA concentration.
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